Ini. J. Heat Muss Transfer.
Printed in Great Britain

Vol. 31, No. 7, pp. 1477-1482, 1988

0017-9310/88 $3.00+0.00
) 1988 Pergamon Press plc

Evaluation of flux models for radiative
transfer in rectangular furnaces

NEVIN SELCUK
Department of Chemical Engineering, Middle East Technical University, Ankara 06531, Turkey

(Received 23 March 1987)

Abstract—Three flux-type models for three-dimensional radiative heat transfer were applied to the pre-
diction of the radiative flux density and the source term of a box-shaped enclosure problem based on data
reported previously on a large-scale experimental furnace with steep temperature gradients. The models,
which are a six-term discrete ordinate model and two Schuster—Schwarzschild type six-flux models, were
evaluated from the viewpoints of both predictive accuracy and computational economy by comparing their
predictions with exact solutions produced previously. The comparison showed that the six-flux model
based on angular subdivisions related to the enclosure geometry produces more accurate results and is
computationally less expensive than the other two models.

1. INTRODUCTION

THE MOST accurate procedures available for math-
ematical modelling of radiation fields within furnaces
are the zone [1,2] and Monte-Carlo [3, 4] methods,
both of which have been extensively and successfully
applied to the prediction of radiant heat transfer in
furnaces for which complete knowledge of the flow
and concentration fields was available. However,
these radiation models have not been extensively used
as part of the complete prediction procedure. The
reason for this is that the equations modelling the
radiation field are not differential in form and hence
are not well suited to solution simultaneously with the
differential equations for flow and reaction. In order
to overcome this disadvantage, flux models [5-9] have
been widely employed as alternative, but less accurate,
procedures in complete prediction procedures. Flux
models of radiation fields take the form of partial
differential equations which are amenable to solution
simultaneously and conveniently with the equations
for flow and chemical reaction.

Previously published multidimensional evaluations
of the accuracy of flux models of radiation fields have
taken two forms.

(1) The flux model has been employed as part of a
complete prediction procedure and predicted tem-
perature and radiative heat flux distributions have
been compared with experimentally determined data
[S,10,11]. With this procedure, it is impossible to
decide whether discrepancies between the predictions
and measurements are attributable directly to the flux
model employed or to inaccuracies in the submodels
used for the prediction of flow, reaction, etc.

(2) The flux model has been tested in isolation from
the modelling of other physical processes by using a
prescribed uniform radiative energy source term
distribution and comparing predicted temperature

and radiative heat flux distributions with values pre-
dicted using the zone or Monte-Carlo methods
[7,9,12]. This procedure for the evaluation of the
accuracy of a flux model suffers from two major dis-
advantages: (a) even if acceptably accurate pre-
dictions are obtained for the uniform source term
distributions, there is no certainty that similarly accur-
ate predictions will be produced for the highly non-
uniform distributions encountered in operating fur-
naces and combustors; (b) considering the iterative
sequence of solution in complete prediction
procedures, it is obvious that when testing a radiation
model which is intended for use in a complete pre-
diction procedure, the input data provided should be
complete temperature distributions, and the predicted
and tested quantities should be the radiative flux den-
sity and radiative energy source term distributions.

What is required at the present time is the evalu-
ation of the predictions of these flux-type radiation
models in isolation from the models of flow and reac-
tion and under the conditions typically encountered
in industrial furnaces.

The first radiation model is a six-term discrete ordi-
nate model for a three-dimensional radiation field
derived in ref. [13]. In this method, the detailed angu-
lar distribution of radiation intensity is approximated
by a finite number of intensities in discrete directions
spanning the solid angle at each point. Application
of the equation of radiant energy transfer into each
direction produces partial differential equations in
terms of the unknown intensities in the specified direc-
tions. Any angular integral of intensity at a point
may be found from the discrete intensities by using a
numerical quadrature formula.

The second and third radiation models are: (a) a
Schuster—Schwarzschild type six-flux model based on
six equal subdivisions of the solid angle surrounding
a point and (b) a Schuster—Schwarzschild type six-
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NOMENCLATURE
g component of radiative flux density vector Superscript
[Wm~?] dimensionless.

Q source term for radiative energy [W m )
x, ¥, z rectangular Cartesian coordinates [m].

flux model with angular subdivisions related to the
enclosure geometry. Both models have previously
been derived in ref. [7]. The basis of these models is
to subdivide the total solid angle surrounding a point
into six pyramid-shaped smaller solid angles in each
of which intensity is assumed to be uniform. The
smaller solid angles are taken to be those subtended
by the six faces of the rectangular enclosure at the
point under consideration. Discontinuous changes in
intensity, therefore, occur in passing from one smaller
solid angle to any adjacent smaller solid angle. Inte-
gration of the equation of radiant energy transfer for
each smaller solid angle, in turn, produces six
first-order differential equations in the unknown
intensities.

In this paper, these radiation models are applied to
the prediction of distributions of radiative flux density
and the radiative energy source term of a rectangular
enclosure problem. The problem is based on data
taken from a large-scale experimental furnace with
steep temperature gradients. The three flux-type radi-
ation models are tested from the points of view of both
accuracy and computational economy by comparing
their predictions with exact values reported pre-
viously in ref. [14].

2. THE TEST PROBLEM

The flux-type models considered have been tested
by making predictions for a black-walled enclosure
problem for which exact solutions have been pro-
duced previously [14]. The enclosure problem is based
on data reported by Strémberg [15] on a large-
scale experimental furnace with steep temperature
gradients typically encountered in industrial furnaces.

The experimental furnace under consideration is
horizontal, of tunnel type with a square cross-section.
It is fired horizontally from the centre of the left end
wall, which is the burner wall, with a mixture of oil
and gas with no swirl, and operates at atmospheric
pressure. The four side walls are water cooled, and the
burner and back end walls are refractory. A detailed
description of the data obtained from the experi-
mental furnace and used as input data for flux-type
models can be found elsewhere [14].

3. NUMERICAL SOLUTION PROCEDURE

The partial differential equations representing the
radiation models under consideration have been re-

cast into finite difference forms by using the control
volume approach. As the variation of gas and wall
temperatures about the z-axis is symmetrical, and
identical in both x- and y-directions, it is only neces-
sary to calculate the values of the components of the
radiative flux density vector and radiative energy
source term for one quarter of the cross-section. One
quarter of the enclosure has been subdivided into
2 %2 x 24 control volumes in the x-, y- and z-direc-
tions, respectively. A medium grid point lies at the
geometrical centre of each control volume and a sur-
face grid point lies at the centre of each control volume
face in contact with the walls of the enclosure. Hence
the total number of medium and surface grid points
are3x2x2x24and 2(2x2+2 x 24424 x 2), respec-
tively. The resulting sets of simultaneous algebraic
equations were solved by the iterative procedure
developed by Peaceman and Rachford [16] for
numerical solution of the algebraic equations with a
coefficient matrix of the tri-diagonal type. This pro-
cedure can be described as ‘forward elimination fol-
lowed by backward substitution’.

4. EVALUATION OF THE FLUX MODEL
PREDICTIONS

Point values of the dimensionless radiative energy
source term and flux density for 2 x 2 x 24 medium
grid points in one quarter of the test enclosure have
been produced using:

(a) the six-term discrete ordinate model—Model 1 ;

(b) the six-flux model, utilizing six equal sub-
divisions of the total solid angle surrounding any
point within the enclosure—Model 2;

(c) the six-flux model, utilizing subdivisions of the
total solid angle based upon the geometry of the
enclosure under consideration—Model 3.

The predictions of these models have been compared
with the exact solutions reported previously in the
literature [14].

In the discussion that follows, all physical quantities
are expressed in dimensionless forms which are
obtained by dividing them by the shortest dimension
of the enclosure or by the maximum emissive power
of the gas, depending on the quantity.

4.1. Source term distributions
Figure 1 shows comparison between flux model pre-
dictions of dimensionless source term distributions and
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F1G. 1. Comparison between the exact values and flux model predictions of dimensionless radiative energy
source terms along (£ = 0.25, j = 0.25, 2).

the exact values for points (¥ = 0.25, y = 0.25, 2).
These grid points represent the points at the centre
of the row of control volumes nearest to the furnace
axis. It can be seen that the exact source term dis-
tribution follows the physically expected trend, rising
steeply from the burner wall onwards, going through
a maximum and decreasing continuously towards the
exit. The maximum of the source term distribution
ocecurs at the same location as the maximum of the
temperature distribution. It can also be noted that the
trend of the distributions predicted by the flux models
is the same as that of the exact distribution and that
Model 3 produces a better agreement with the exact
solution.

Figure 2 illustrates the comparison between the

exact values of dimensionless source term and the
distributions predicted by the flux models for grid
points (% = 0.75, 7 = 0.25, #) and (¥ = 0.75, 7 = 0.75.
Z). These grid points represent the medium points
nearer to the side wall and near the corner of the
furnace, respectively. It can be seen that good agree-
ment is obtained and that the source term dis-
tributions for grid points (¥ = 0.75, § = 0.75, 2) show
smaller variation along the length of the furnace than
those for other medium grid points. This is consistent
with the uniform temperature distribution in the
medium near the corner of the enclosure.

A condensed comparison of the flux model pre-
dictions of the dimensionless source term values is
contained in Table 1. Three values are given for each
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F1G. 2. Comparison between the exact values and flux model predictions of dimensionless radiative energy

source terms along (¥ = 0.75, § =
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model ; the maximum point percentage error and the
average absolute percentage error both of which give
measures of the accuracy of the predicted source
terms, the number of iterations necessary to produce
convergence of the iterated solution to within
0.0001% of the values in the previous iteration at all
grid points, which measures the computing time.

As can be seen from Table 1, Model 3 produces
more accurate results and is computationally less
expensive than the other two models.

4.2, Flux density distributions

Figure 3 illustrates the comparison between the
point values of the dimensionless flux density to the
side wall in the positive x-direction predicted by the
flux models and exact solutions for surface grid points.
Points on the lines (X =1, §=0.25, Z) and (X =1,
7=0.75, £) represent points near the centre of the
face and near the corner of the face, respectively. It
can be seen that the flux densities to the wall are
underestimated over the whole length of the enclosure
by Models 1 and 2, and overestimated by Model 3.

A condensed comparison of the flux model pre-

Table 1. Comparison of flux model predictions of dimen-
sionless source terms
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dictions of the dimensionless flux densities is con-
tained in Table 2. As can be seen from Table 2, the
average absolute error produced by Model 3 is slightly
higher than that predicted by Model 1. However, the
maximum point percentage error produced by Model
3 is significantly lower than those predicted by the
other two models. It can be noted that Model 3 pro-
duces more accurate results and is computationally
less expensive.

In an earlier paper [7], these radiation models had
been applied to a cubic enclosure problem with a
uniform radiative energy source term. When the
maximum point percentage and the average absolute
errors in flux densities produced by the cubic enclosure
problem are compared with the values found in this
study, the errors calculated in this study are found to
be approximately two times those produced in the
previous study. This can be, to a large extent, due to
the use of a highly non-uniform temperature dis-
tribution, and, to some extent, due to the use of an
exact solution, as opposed to the Monte-Carlo solu-
tion, for testing purposes.

In order to test the effect of degree of subdivision

Table 2. Comparison of flux model predictions of dimen-
sionless flux densities to the side wall

Average Average
Maximum absolute Maximum absolute
percentage percentage  Number of percentage percentage  Number of
Flux model error error iterations Flux model error error iterations
Model 1 34.84 6.58 10 Model 1 51.80 14.92 10
Model 2 40.23 6.67 13 Model 2 47.71 18.68 13
Model 3 —26.61 3.65 9 Model 3 39.50 16.31 9
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FiG. 3. Comparison between the exact values and flux model predictions of dimensionless flux densities to
the side wall.
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Table 3. Comparison of flux model predictions of the per-
centage errors in generated and removed radiative energy

Percentage error Percentage error

Flux model in generation in removal
Mode! | 1.32 1.32
Model 2 1.32 1.32

1.44 1.44

Model 3

on the accuracy of flux model predictions of point
values of the dimensionless radiative energy source
term and the flux density, the flux model programme
has been run with a finer grid, 6 x 6 x 24 control vol-
umes. It has been found that the finer subdivision
does not produce any substantial improvement on the
predicted results, and that the slight changes in the
point values can only be obtained at the expense of
substantially increased computing time and storage.

To provide a global check on the accuracy of the
flux model predictions, the total rate of removal of
radiative energy through the walls and the total rate
of generation of radiative energy within the enclosed
medium were calculated and compared with the exact
values. Table 3 shows the errors in generated and
removed radiative energy produced by the flux model
predictions. It can be seen that the percentage errors
in generated and removed radiative energy are almost
equal for each model, implying that each model pro-
duces consistent results, although different from the
exact values.

5. CONCLUSION

Three flux-type models for box-shaped enclosures
filled with an absorbing—emitting medium of constant
properties have been applied to the prediction of the
distributions of radiative flux density and the energy
source term of a black-walled enclosure problem. The
problem is based on data reported previously on a
large-scale experimental furnace with steep tem-
perature gradients typically encountered in industrial
furnaces. The flux-type models which have been
employed are a six-term discrete ordinate model and
two Schuster—Schwarzschild type six-flux models ; one
utilizing six equal subdivisions of the total solid angle
surrounding any point within the enclosure, and the
other utilizing subdivisions of the total solid angle
based upon the geometry of the enclosure. The models
have been tested from the viewpoints of both pre-
dicted accuracy and computational economy by com-
paring their predictions with exact solutions reported
earlier in the literature. The comparisons show that
the six-flux model based on angular subdivisions
related to the enclosure geometry produces more
accurate results and is computationally less expensive
than the other two models.

Results of the previous testings of the accuracy of
the same models on a cubic enclosure problem with a
uniform radiative energy source term and this study
illustrate that the errors produced in the present inves-
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tigation are approximately two times those calculated
in the previous study. This implies that the evaluation
of the accuracy of the radiation models under uniform
radiative energy source term conditions can be mis-
leading. The testing of any flux type model should be
carried out on problems with a highly non-uniform
gas temperature distribution typical of an operating
furnace.
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EVALUATION DE MODELES POUR LE CALCUL DES FLUX RADIATIFS DANS DES
FOURS RECTANGULAIRES

Résumé—Trois modéles pour I'estimation des transferts radiatifs tridimensionnels sont appliqués 4 un

probléme traité expérimentalement et dont les résultats ont déja été publiés. Un modele a six termes et

deux modeéles a six flux du type Schuster—Schwarzschild sont évalués du point de vue de la précision des

prévisions et aussi de I'économie de calcul, en les comparant aux solutions précédemment produites. Le

modéle a six flux, basé sur des subdivisions angulaires liées a la géométrie de ’enceinte, donne des résultats
plus précis et il est comparativement moins cher que les deux autres modéles.

MODELLE ZUR BERECHNUNG DES STRAHLUNGS-WARMEAUSTAUSCHES IN
QUADERFORMIGEN OFEN

Zusammenfassung—Es werden drei verschiedene Modelle fiir den dreidimensionalen Strahlungs-
wirmeaustausch dazu verwendet, die Strahlungsdichte und den Quellterm in einem quaderférmigen
Hohlraum zu berechnen. Die Grundlage hierfiir bilden kiirzlich veréffentlichte MeBdaten von einem
Versuchsofen mit groBen Temperaturgradienten. Die Modelle, ein sechsgliedriges Ordinaten-Modell und
zwei Sechs-FluB-Modelle nach Schuster—Schwarzschild werden nach Gesichtspunkten von Rechenzeit und
Rechengenauigkeit durch Vergleich mit exakten Losungen ausgewertet. Der Vergleich zeigt, dafl das auf
winkligen Einteilungen (entsprechend der Hohlraum-Geometrie) basierende Sechs-FluB-Modell weniger
kostenintensiv ist und zu genaueren Ergebnissen fiihrt als die beiden anderen Modelle.

OLEHKA MOJEJIEN ITIOTOKA IIPU PAOUALIMOHHOM IMEPEHOCE B
MPAMOYIOJIBHbIX MEYAX

AnnoTanHs—PaccMOTpeHs! TPH MOJENIM TPEXMEPHOTO PaIKalldOHHOIO TEeMOoOOMEHa, N0 KOTOPBIM HO
OCHOBE H3BECTHHIX MaHHBIX IUIS TOJHOMACIUTAOHON MeYM C IUJIABHLIMHM IPAaJAMEHTAMH TEMIEPATYphI
PpaccUATaHbI MJIOTHOCTH MOTOKA H3J1y4eHHMs M MCTOYHHMKOBBIA YieH B 3aiade JUIS 3aMKHYTOH [OJIOCTH.
Mogeny, npeacTasisiomme coboi HecTHnapaMeTPHYECKy0 JHCKPETHO-OPUAHHATHYIO MOJENL H JBE
wectunoTo4Hsle Moaeau tuna llycrepa—llIBapiunnsaa, OUEHEHb! ¢ TOYKM 3pEHUS TOYHOCTH H 3KOHO-
MHYHOCTH YMCJIEHHOTO CYETa IyTeM CPABHEHHS C H3IBECTHHIMH TOYHBIMH pelieHHAMH. CpaBHeHUe MoKa-
3aJ10, YTO LUECTHNOTOYHAS MOAE/b, OCHOBAHHAS Ha JEJEHWH MNOJIOCTH HA YrJIOBHIE 0OJIACTH TOYHEE M
KOHOMHYHEE ABYX APYI'UX MOZIEJEH.



